If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-10.5=0
a = 1; b = 5; c = -10.5;
Δ = b2-4ac
Δ = 52-4·1·(-10.5)
Δ = 67
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{67}}{2*1}=\frac{-5-\sqrt{67}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{67}}{2*1}=\frac{-5+\sqrt{67}}{2} $
| -3(k-6)=-18 | | x+(x-3)=1 | | 3x+95=2x+1 | | -40+5x=-8(5-6x) | | 5/(3x)+95=2x+1 | | 1/3x=1/15 | | x-5=95-x | | u/5-11=1 | | 3x+95=2x+1 | | -4(8k-2)=4k-28 | | -r-10=-5r+10 | | 15=21d | | 4x-2(x-4)=-6+4x+4 | | 4(x-10)-8=2(x-16)+2 | | 2x+5=5x+18 | | -2(y-1)=-9 | | -7-2t=-7-9t | | 7(1+3k)=7k-35 | | 4x(4+x)=48 | | 13y-16=8+y | | -5g+10=-7g-4 | | 3x+162+36=9 | | x^2+2=2x+10 | | 7a-40=-(a+8) | | 18=4-(x+2) | | u/2-8=5 | | 6.49x+16=42.1201+4x | | 5x-2(x-3)=-8=5x=4 | | 5x−3x−5=3 | | 7m=6m-7 | | 2+8t=6t | | 22-2a=6(7+3a) |